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A new model to describe the physics of (VO)2P2O7
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Abstract. In the past different models for the magnetic salt vanadyl pyrophosphate (VO)2P2O7 were
discussed. Neither a spin ladder nor an alternating chain are capable to describe recently measured magnetic
excitations. In this paper we propose a 2D model that fits better to experimental observations.

PACS. 75.10.-b General theory and models of magnetic ordering – 75.25.+z Spin arrangements in mag-
netically ordered materials (including neutron and spin-polarized electron studies, synchroton-source X-ray
scattering, etc.) – 75.40.Mg Numerical simulation studies

Low dimensional quantum spin systems have been a field
of intense theoretical and experimental research over the
last decades. Special interest was given to spin ladder
and chain materials. One compound that has been ex-
amined in this context is the insulating magnetic salt
vanadyl pyrophosphate (VO)2P2O7. Initially it was con-
sidered as a prototypical realization of a two-leg antifer-
romagnetic Heisenberg ladder [1]. However, susceptibility
data on polycrystalline and single crystalline material
could be well fitted with both, ladder or alternating chain
models [1–3], stressing the fact that susceptibility is not
too sensitive to the particular model. Early inelastic neu-
tron scattering measurements on polycrystalline samples
indicated a spin gap of about 3.7 meV and supported
a two-leg ladder model with the coupling constants es-
timated from susceptiblity data [4].

Recent neutron scattering experiments with powder
samples [6] and with an array of single crystals [7] pro-
vided detailed information on the low-energy excitation
spectrum. Garrett et al. [7] observed a triplet branch with
strongest (antiferromagnetic) dispersion in b-direction,
weak (ferromagnetic) dispersion in a-direction, and a spin
gap of 3.1 meV. Most notably they found an additional
second branch, separated from the first by an energy
smaller than the gap. This was inconsistent with the pic-
ture, of (VO)2P2O7 being a spin ladder in a-direction, but
also an alternating Heisenberg chain in b-direction can not
explain a second triplet branch over the whole Brillouin
zone, as was shown recently [8,9].

In this work, starting with the alternating Heisenberg
chain, we check whether coupling of (two) chains resolves
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this puzzling situation. As we do not succeed proceeding
this way, we consider a new, truly two-dimensional model.
We perform exact diagonalizations of finite systems with
up to 32 spins and periodic boundary conditions, supple-
mented by finite-size analysis if possible.

The Hamiltonian of the alternating Heisenberg chain
(AHC) reads as follows

HAHC = Jb
∑
i

(1 + δ(−1)i)Si · Si+1, (1)

where Si are spin-1/2 operators and i denotes the sites in
b-direction (see Fig. 1). For δ > 0 the spectrum has a gap;
there is an one-magnon branch and a singlet branch, at
least around momentum π/2, below a continuum of states.

As an example Figure 2 shows the low-lying ex-
citations of a finite system of 32 sites for δ = 0.2.
The magnon branch is fitted to a sum of cosines
ωmq =

∑5
n=0 an cos(2nq) and the shaded region corre-

sponds to the continuum of two-magnon excitations re-
sulting from this dispersion. Recently it was stressed
[8,10] that there exists a second well-defined triplet be-
low the two-magnon continuum near momentum π/2,
but as Figure 2 indicates, the second triplet occurs
only very close to higher states, even for the rela-
tively strong dimerization of δ = 0.2. Therefore it was
stated that an alternating chain will not explain the
second triplet excitation observed in (VO)2P2O7 at all
q-momenta. However, it is known [8] that including frus-
tration, i.e. an antiferromagnetic next nearest-neighbor
interaction α between Si and Si+2, into the alternating
chain model, yields a second well-defined triplet branch
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Fig. 1. Schematic structure of (VO)2P2O7. The exchange cou-
plings are depicted for (i) the ladder model (J‖ = Ja, J⊥ =
J−b ), (ii) the alternating chain model (J±b = Jb(1±δ), and (iii)
the new model (J±b , Ja, J×). Throughout we measure energies
in units of Jb.
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Fig. 2. Low-energy excitations of the AHC. The inset shows
the difference∆ of the 1st and 2nd singlet and the 2nd triplet to
the 1st quintet at momentum π/2 versus inverse chain length.

below the continuum in the whole Brillouin zone, provided
α is sufficiently strong.

Since the nearest-neighbor exchange paths via the
PO4 groups in (VO)2P2O7 are already relatively compli-
cated [5], additional longer ranged couplings in b-direction,
leading to an intra-chain frustration, would presumably
involve neighboring chains in a nontrivial way. Therefore,
in a first step, we will consider a simple perpendicular
coupling of two alternating chains instead:

HCC = Jb
∑
ij=1,2

(1 + δ(−1)i)Si,j · Si+1,j + Ja
∑
i

Si,1 · Si,2.

(2)
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Fig. 3. Low-energy excitations of two alternating chains (16
sites each) coupled ferromagnetically; the parameters are: δ =
0.2, Ja = −0.1.

Here j is numbering the chains. As was already suggested
in [7], such a coupling in a-direction should be ferromag-
netic to explain the observed dispersion. For illustration,
in Figure 3 we plotted a few low-lying energies of a 2× 16
system with δ = 0.2 and Ja = −0.1. Similar results were
obtained for a 3× 8 system.

Again we have a well-defined magnon branch. As a
guide to the eyes we shaded the region where one would
expect a two-magnon continuum, approximated here by
adding two magnon energies of the finite system. Close
to the continuum edge there are several states: singlets,
triplets, as well as quintets. To gain further insight one
has to perform a finite-size analysis. For extrapolation to
the infinite system we use the following formulas for the
lowest singlets and triplets [8,11]:

ES(L) = ES(∞) +

(
B

L
+ C

)
e−L/A (3)

ET(L) = ET(∞) +
B

L
e−L/A. (4)

In Figure 4 a few low-lying excitations at momenta
(qb, qa) = (0, 0), (0, π) and (π/2, 0) are given subject to
the ferromagnetic interchain coupling Ja. At (0, 0) and
(0, π) the data is extrapolated to infinite system size. At
(π/2, 0) results for a 2×16 system are shown, because the
small number of four different system sizes (2×4, 8, 12, 16)
makes finite size scaling questionable at this momentum.
Nevertheless, in the inset we tried to extrapolate the sec-
ond triplet at (π/2, 0) to the infinite system, using the
ansatz of equation (4). The plot indicates that this triplet
shows a weak nonmonotonic behaviour, in contrast to the
single chain case.

Obviously at momenta (0, 0) and (0, π) there are no
second triplets below the two-magnon continuum. Just at
(qb, qa) = (π/2, 0) a second triplet stays very close to the
continuum edge, and the well-defined singlet excitation,
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Fig. 4. Energy of the lowest singlet (open circles) and triplet
(filled squares) excitations for different interchain coupling Ja
and fixed dimerization δ = 0.2.

known from the single alternating chain seems to disap-
pear with increasing interchain coupling Ja.

From the above results we conclude that an interchain
coupling of this simple type does not qualitatively change
the structure of the low-energy excitations compared to
the single alternating chain. Excitations are just shifted
(as it seems linearly with Ja in most cases), but no new
features appear. This is, why we propose another model
for (VO)2P2O7.

We mentioned above that frustration in the alternating
chain can lead to a well-defined triplet below the two-
magnon continuum. Thus going to the second dimension
we include an additional, frustrating coupling J×. Then
our model Hamiltonian reads

H× = Jb
∑
i,j

(1 + δ(−1)i)Si,j · Si+1,j + Ja
∑
i,j

Si,j · Si,j+1

+ J×
∑
i,j

(S2i,j · S2i+1,j+1 + S2i+1,j · S2i,j+1) (5)

(cf. Fig. 1, lower panel). As yet there is no data available
about the strength of such a coupling, but as a first step
it seems not unreasonable in view of the oxygen-mediated
superexchange paths in (VO)2P2O7. We assume all ex-
change integrals to be antiferromagnetic, but still the pa-
rameter space is very large. It appears that J× has to be
bigger than Ja to get a ferromagnetic magnon dispersion
in a-direction, what is plausible. On the other hand, both
couplings should not differ too much for a second triplet
branch to exist in the whole momentum space, and should
have a sufficient strength. The size of the gap to the first
triplet branch is (still) mainly controlled by the dimeriza-
tion δ.

A good choice of parameters is δ = 0.3, Ja = 0.4 and
J× = 0.425, for which we diagonalized systems of two,
three and four chains with a total number of up to 32
spins. The low-energy excitations of the 4 × 8 system are
shown in Figure 5.

0.0 0.5 1.0
qb/π

singlets
triplets
quintets or higher

−1.0 −0.5 0.0
qa/π

0.0

0.5

1.0

1.5

2.0

2.5

E

δ = 0.3

Ja = 0.4

JX = 0.425

Fig. 5. Low-energy excitations of the 2D model; the system
size is 4× 8, δ = 0.3, Ja = 0.4 and J× = 0.425.

Beside two triplet branches (T1 and T2) we observe
also a well-defined singlet (S1), and there might even be a
second singlet (S2) near momentum (qb, qa) = (π/2, 0). As
the difference between J× and Ja is small, the dispersion
of the triplets is weak in a-direction, in accordance with
experiments. We stress that the picture remains qualita-
tively unchanged going from the 3×8 to the 4×8 system,
just the second triplet shifts downwards at momentum
(0, 0) with increasing system size. Thus we believe that
these features will survive in the infinite system.

To provide some more information on the excitation
spectrum, we calculated the dynamical spin structure fac-
tor – which is proportional to the neutron scattering cross
section – and the integrated spectral weight

S(q, ω) =
∑
n

|〈n|Sz(q)|0〉|2δ(En −E0 − ω) , (6)

N(q, ω) =

∫ ω

0

dω′S(q, ω′) , (7)

where Sz(q) =
∑
i,j e

iq·ri,jSzi,j . In the plot the integral is

normalized to one; its real value N(q) = N(q,∞) is noted
in each panel.

The most pronounced feature of the structure factor
is of course the first triplet, but it seems that we need
a finite momentum component in b-direction to get some
weight. For comparison take the dashed and solid lines
in the upper two panels of Figure 6, corresponding to mo-
menta (π, x) and (0, x), respectively, that are equivalent in
energy. The second triplet occurs only in a-direction and
has very low spectral weight (note the small integrated
intensity in the upper panel, where T2 seems to be dom-
inant). This is unsatisfactory in view of the experiments,
where both triplets are comparable in intensity. Obviously,
it is an effect of special selection rules, since we arranged
the spins in a quadratic lattice for our calculation, not
taking into account their real positions in the (VO)2P2O7

crystal.
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Fig. 6. Dynamical spin structure factor for the 2D model (4×8
system, δ = 0.3, Ja = 0.4, J× = 0.425); the lowest singlet and
triplet excitations are classified.

As in the other figures we shaded the region of an
assumed two-magnon continuum. Here the peak structure
is expected to merge into a broad absorption band for the
infinite system. The poorer resolution and the continously
increasing integrated weight in Figure 6 are first signs of
this behaviour.

To summarize, using exact diagonalization methods
we have shown that a simple ferromagnetic coupling
of alternating Heisenberg chains does not provide two
well-defined triplet branches as were observed in inelas-
tic neutron scattering experiments on vanadyl pyrophos-
phate (VO)2P2O7. From our experience with frustrated
alternating Heisenberg chains, we proposed an alternative
model to describe the low-energy physics of (VO)2P2O7,
introducing a frustrating interchain coupling. Due to the
large parameter space and the computational effort for
sufficiently extended 2D systems, we made no attempt
to fix the parameters for (VO)2P2O7, but showed that
the proposed model can describe the general feature of
two triplet branches below a continuum of states. These
triplets exhibit a ferromagnetic (antiferromagnetic) dis-
persion in a- (b-) direction. Thus we believe that our model
is a good starting point for further analysis.
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Fig. 7. Low-energy excitations of the 2D model; the system
size is 4× 8, δ = 0.11, Ja = 0.226 and J× = 0.285.
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Note added in proof

After submission of this contribution a similar study of
Uhrig et al. [12] appeared at the cond-mat e-print archive.
Using perturbation theoretic methods for the same 2D
model the authors try to fit the free parameters to the
observed magnon dispersion, which yields (δ, Ja, J×) =
(0.115, 0.226, 0.285). Performing exact diagonalizations
also for this parameter set, we found that the second
triplet mode is not clearly separated from higher excita-
tions (Fig. 7). Thus we think a better adaption of the
model to (VO)2P2O7 has still to be done.
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